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Holonomy in Quaternionic Quantum Mechanics
Jerzy Dajka® and Marek Szopa+?
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The generalization of geometric phase for the quantum systems described by quater-
nionic quantum mechanics is given. The geometry of the quantum cyclic evolution is
studied and the quaternionic Berry phase is shown to be given by the holonomy of the
suitably defined fiber bundle.
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1. INTRODUCTION

The geometric ideas play an important role in physics. The quantum mechan-
ical phenomena being geometric in its nature is the Berry phase (Anandan and
Aharonov, 1990; Berry, 1984; Simon, 1983). After Berry’s discovery the phase
has been formalized in terms of the connection on the suitably defined fiber bundle
as a holonomy. The topological nature of holonomy leads to the observation that
the geometric phase is a global feature of the quantum evolution. In this paper
the results are extended in the framework of the quaternionic quantum mechanics
(Adler, 1995). The topological considerations allow to recognize the difference
between results concerning triviality of the holonomy obtained in the standard
complex and quaternionic quantum mechanics.

2. GEOMETRIC PHASE IN QUATERNIONIC QUANTUM MECHANICS

As a starting point, some concepts of quaternionic quantum mechanics will
be introduced. Our approach is based on studies by Birkhoff and von Neumann,
1936; Finkelstein, Jauch, and Speiser, 1959; Adler, 1995. The space of states of the
quantum system is a Hilbert spatgH) on the algebra of Hamilton’s quaternions
H with H-valued scalar produgt | -) : H x H — H. The time evolution of the
state is governed by a group of unitary operatofs gienerated by the antihermitian
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operatorA satisfying the Scludinger equation

¥ =—Ay. (1)

Below we derive the formula for the geometric phase. The approach is a gen-
eralization of both Anandan’s (Anandan, 1988) and Adler’'s approaches (Adler,
1995).

Let us consider the tlme evolution of tHedimensional subspace &f with
an orthonormal basﬂapa}a_ It evolves according to

Va=—Ajpa, a=1...f. )

Let us assume that there exists the seft of/clic statewa};:1 such that/,(0) =
Ya(T),a=1... f and for everyt € [0, T] satisfying

f
Jfa = Z 1//buba(t) (3)
b=1

with the unitary quaternionic matrild (t). Then the Schodinger equation (1)
implies

T . T
Uii(T) = eXp[—/o (¥ | i) dt —‘/0 (Y | Alﬂi)dt] 4)

The unitary transformatiob) (T) is a matrix “phase factor,” which is gained by
the basis after a cyclic evolution. The tegn(T) = exp(— fo (Y | ¥i)dt)is a
non-Abelian, nonadiabatic Berry phase and has, as will be shown, geometric origin.

3. GEOMETRY OF TIME EVOLUTION

Let E be a set of allf -dimensional subspaces #f. We consider the fiber
bundleE = B x xG where the base spa&:= E/G andG = U(f) is a group
of unitary quaternionic matrices. The bundieis equivalent to the quaternion
version of the bundle of the Stiefel manifold over the Grassman manifold with the
fibreU (f). For f = litreducestothe Hopfbundle. Ligt) € B be represented by
a diagonal matrixh) := diag(|ns) - - - [n¢)) with an orthonormal basi{slni)}if=1
Every|Ti) € E, by the choice of a local section of the bun@ecan be written as
If) = |M)g with g € G and natural matrix multiplication. The right action of the
groupG on E is given by a natural matrix multiplicatioRy| Ti) := |Ti)g. We define
the dual{n| as a diagonal matrix formed by corresponding bra-vectors. The dual
to | i) € E is atransposed matrixi| with corresponding bra-vectors as elements.
We define the multiplication of two elements Bf (or B) to be a combination
of the natural matrix multiplication and the scalar productin ((ny |€2));j :=
Z,I 1 |n2k ) or (Ing)(na))jj == Zk 1 |n1|k)(n2k |. In the first case the resultis a
H valueci matrix while in the second the operator acting=ofor B).
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Let 7 be the f -dimensional square matrix with every eleméfjt= 1. The
one forme(|T)) := (A|F|dT is a connection form oi.

The form w is G-valued whereg is a Lie algebra ofG = U(f). Since
(A|F| T = 1 we obtain (1)) + w(|R) = 0. The Lie algebra o6 is known to
satisfy (Nakahara, 199@) = {A | AT + A = 0},which shows thab is G-valued.
The one-formgG satisfies Rg*w(m ) = gfw(|H)g and o(A*) = (Ti expt A|F]|
d(Ti exptA)), where A*|T) = dt(|Ti) exptA)i—o is a fundamental field.
It shows thatw is indeed a connection one-form (Nakahara, 1990).

Below we show that the geometric phase is a holonomy of a fiber bundle
E. Let us considecyclic evolutionin B given by the loopC : [0, T] — B and
C(0) = C(T). There is a family of curve§ : [0, T] — E suchthatpC(t) = C(t)
for everyt € [0, T] where p: E — B is a bundle projection. I£(0) = C(0)
then C(T) = C(O)g(T) with a holonomyg(T) € G corresponding to the geo-
metric phase. LeC be the horizontal lift ofC defined bya)(|_ﬁ(t) )) =0 for
Ti(t) e C.

The equation for parallel transport definedd§Ti(t))) = 0 or equivalently
(Ti|F|dT) = 0 implies 0= (N(t)g(t)|F|d(N(t)g(t))). Thus, the parallel transport
alongC is described by the equathfm(t)|}‘|dﬁ(t) +dg(t)g" = 0. Forg(0) =
1 € G we obtain the holonomyg(T) = exp[— fo ﬁ(t)|j’-‘|(‘,’t n(t)) dt] or, in an
equivalent form

o(T) = exp[— ¢ <‘ﬁ|f|d‘ﬁ>] . (5)

It is a formula describing the geometric (Berry) phase in (4). The expression
A(| ) := (N |F|dn) is a local conection form oB.

The phaseg(T) does not depend on the time-independent gauge transfor-
mation, which is equivalent to the replacement of the sedtion:= | <yg(t) by
| 7y := | ygg(t) whereg is t-independent. Writingyg(t) =: §(t) we conclude
that the holonomy (5) is preserved.

Further we present a simple application which follows from the existence
of the connection one-form. We give a formula allowing to calculate a distance
between two vectors iB in terms of vectors irE. Let us consider the identity
(Anandan, 1990)

d 8 '
g™ = g+ Mo(m)

where the first term is defined as a differedggi) = 2 |T) — [M)w(|T)).

Definition of the connection form is equivalent to unique decomposition
TqE = V4E @ HqE for everyq € E of the tangent spack E into horizontal and
vertical subspaces. Fqr= |Ti) the vector% IT) € HqE since the horizontal sub-
space belongs to the kernekofThis vector is tangent to the cur@: [0, T] — B
given by the projectiomp|Ti(t)) = | N(t)) = C(t). Itis implied by the fact that the
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vertical space belongs to the kernel of the tangent map induced by projgction
Thus 2 |T) = &|7) for every curve At)) C B.

Since%|N) = &) — [Mw(|T)) = $IT) — [T)(Ti|F] &|T) theintegration
yields [ M) dt = [2(&IT) — [A)(H|F] $T) dt. Thus

t2

a =) - ine) = [(Gm-mEagm) i @
ty

Taking an arbitrary norm ofA gives a metric inB with a distance in base space

B expressed in terms of vectors ih The proposed metrics is purely geometric

with no invocation of the specific evolution in opposition to the metrics proposed

by Anandan, 1990.

4. TOPOLOGICAL ASPECTS OF QUANTUM HOLONOMY

In this section we analyze some topological properties of holonomy, which
lead to nontrivial difference between quaternionic and complex Berry phase. We
consider cyclic quantum evolutioh : M — B where the parameter spabk~
S" is homeomorfic witm-dimensional sphere. It is well known thatM = S?
the complex geometric phaserientrivial in that sense that it cannot be removed
by a globally defined gauge transformation (Szopa, 1992). It is caused by the fact
that there is no globally defined coordinate system on the sphere and the local
connection one-form is singular as in the cas® ¢f) magnetic monopole. In the
following we compare the triviality of the holonomy in quaternionic and complex
guantum mechanics. We limit to the case wHeg: 1 andE = B x xG is Hopf
bundle: quaternionic (with a fiber topologically equivalens& or complex (with
a fiber topologically equivalent t8%). We call the geometric phase trivial if it is
removable by a gauge transformation with no singularity, i.e. global. First we state
without proof the theorem (Kiritsis, 1987):

Let M ~ S". For every loopf : M — B the geometric phase is trivial if
and only if 7,(E) = 7n(B), wheren,(X) denotes theith homotopy group of
topological space.

Let us consider the exact sequence of a bundle homotopy (Steenrod, 1951)

mn(G) — 7n(E) — mn(B) — 7n-1(G) (7)

In the quaternionic case fof = 1 the fiberG ~ S3. Let us consider the case
n = 2, i.e. the parameter spat& homeomorfic with a two-dimensional sphere.
Since both first and second homotopy grousbis trivial, the sequence (7) yields

0— m(E) —» m2(B) — 0 (8)

Since the sequence (8) is exag(E) = 72(B), and according to the theorem stated
above, the geometric phase is trivial contrary to the results obtained in complex
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quantum mechanics (Szopa, 1992). Therefore we showed that the global properties
of quantum evolution can be different in the quantum mechanics over the algebra
of quaternions and over the field of complex numbers.

5. CONCLUSIONS

Quantum mechanics with a Berry’s discovery of the geometric phase has
gained a new global aspect. This geometric and topological structure can also be
considered in the framework of the quaternionc quantum mechanics. Geometric
phase has been shown to be a holonomy of a suitably defined fiber bundle due to
the existence of quaternionic analogy of the Anandan connection.

The topological analysis of the triviality of the geometric phase has shown
the possible differences between results obtained in quaternionic and complex
guantum mechanics. For the evolution generated by a parameter space topologi-
cally equivalent to the two-dimensional sphere the quaternionic geometric phase
is trivial while the complex one not. The global properties of quaternionic quan-
tum mechanics caused by the noncommutativity of Hamilton’s quaternions can be
different if compared with the complex case.
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