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Holonomy in Quaternionic Quantum Mechanics
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The generalization of geometric phase for the quantum systems described by quater-
nionic quantum mechanics is given. The geometry of the quantum cyclic evolution is
studied and the quaternionic Berry phase is shown to be given by the holonomy of the
suitably defined fiber bundle.
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1. INTRODUCTION

The geometric ideas play an important role in physics. The quantum mechan-
ical phenomena being geometric in its nature is the Berry phase (Anandan and
Aharonov, 1990; Berry, 1984; Simon, 1983). After Berry’s discovery the phase
has been formalized in terms of the connection on the suitably defined fiber bundle
as a holonomy. The topological nature of holonomy leads to the observation that
the geometric phase is a global feature of the quantum evolution. In this paper
the results are extended in the framework of the quaternionic quantum mechanics
(Adler, 1995). The topological considerations allow to recognize the difference
between results concerning triviality of the holonomy obtained in the standard
complex and quaternionic quantum mechanics.

2. GEOMETRIC PHASE IN QUATERNIONIC QUANTUM MECHANICS

As a starting point, some concepts of quaternionic quantum mechanics will
be introduced. Our approach is based on studies by Birkhoff and von Neumann,
1936; Finkelstein, Jauch, and Speiser, 1959; Adler, 1995. The space of states of the
quantum system is a Hilbert spaceH(H) on the algebra of Hamilton’s quaternions
H with H-valued scalar product〈· | ·〉 : H×H→ H. The time evolution of the
state is governed by a group of unitary operators inHgenerated by the antihermitian
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operatorA satisfying the Schr¨odinger equation

ψ̇ = −Aψ. (1)

Below we derive the formula for the geometric phase. The approach is a gen-
eralization of both Anandan’s (Anandan, 1988) and Adler’s approaches (Adler,
1995).

Let us consider the time evolution of thef -dimensional subspace ofH with
an orthonormal basis{ψ̃a} f

a=1. It evolves according to

˙̃ψa = −Aψ̃a, a = 1 . . . f. (2)

Let us assume that there exists the set off cyclic states{ψa} f
a=1 such thatψa(0)=

ψa(T), a = 1 . . . f and for everyt ∈ [0, T ] satisfying

ψ̃a =
f∑

b=1

ψbUba(t) (3)

with the unitary quaternionic matrixU (t). Then the Schr¨odinger equation (1)
implies

Uki(T) = exp

[
−
∫ T

0
〈ψk | ψ̇ i 〉 dt −

∫ T

0
〈ψk | Aψi 〉 dt

]
. (4)

The unitary transformationU (T) is a matrix “phase factor,” which is gained by
the basis after a cyclic evolution. The termgki(T) = exp(− ∫ T

0 〈ψk | ψ̇i 〉 dt) is a
non-Abelian, nonadiabatic Berry phase and has, as will be shown, geometric origin.

3. GEOMETRY OF TIME EVOLUTION

Let E be a set of allf -dimensional subspaces ofH. We consider the fiber
bundleE = B××G where the base spaceB := E/G andG = U ( f ) is a group
of unitary quaternionic matrices. The bundleE is equivalent to the quaternion
version of the bundle of the Stiefel manifold over the Grassman manifold with the
fibreU ( f ). For f = 1 it reduces to the Hopf bundle. Let|←n〉 ∈ B be represented by
a diagonal matrix|←n〉 := diag(|n1〉 · · · |n f 〉) with an orthonormal basis{|ni 〉} f

i=1.
Every|→n〉 ∈ E, by the choice of a local section of the bundleE, can be written as
|→n〉 = |←n〉g with g ∈ G and natural matrix multiplication. The right action of the
groupG onE is given by a natural matrix multiplicationRg|→n〉 := |→n〉g. We define
the dual〈←n| as a diagonal matrix formed by corresponding bra-vectors. The dual
to |→n〉 ∈ E is a transposed matrix〈→n|with corresponding bra-vectors as elements.
We define the multiplication of two elements ofE (or B) to be a combination
of the natural matrix multiplication and the scalar product inH : (〈n1 |∈2〉)ij :=∑ f

k=1〈n1ij |n2kj〉 or (|n1〉〈n2|)ij :=∑ f
k=1 |n1ik〉〈n2kj |. In the first case the result is a

H-valued matrix while in the second the operator acting onE (or B).
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Let F be the f -dimensional square matrix with every elementFij = 1. The
one formω(|→̇n〉) := 〈→n|F |d→n is a connection form onE.

The form ω is G-valued whereG is a Lie algebra ofG = U ( f ). Since
〈→n|F |→n = 1 we obtain (ω(|→̇n〉))† + ω(|→̇n) = 0. The Lie algebra ofG is known to
satisfy (Nakahara, 1990)G = {A | A† + A = 0},which shows thatω is G-valued.
The one-formG satisfies Rg∗ω(|→̇n〉) = g†ω(|→̇n)g and ω(A#) = 〈→n expt A|F |
d(→n expt A)〉, where A#|→n〉 = d

dt (|→n) expt A)|t=0 is a fundamental field.
It shows thatω is indeed a connection one-form (Nakahara, 1990).

Below we show that the geometric phase is a holonomy of a fiber bundle
E. Let us considercyclic evolutionin B given by the loopC : [0, T ] → B and
C(0)= C(T). There is a family of curves̃C : [0, T ] → E such thatpC̃(t) = C(t)
for every t ∈ [0, T ] where p : E→ B is a bundle projection. IfC̃(0)= C(0)
then C̃(T) = C̃(0)g(T) with a holonomyg(T) ∈ G corresponding to the geo-
metric phase. Let̃C be the horizontal lift ofC defined byω(|→̇n(t)〉) = 0 for
→n(t) ∈ C̃.

The equation for parallel transport defined byω(|→n(t)〉) = 0 or equivalently
〈→n|F |d→n〉 = 0 implies 0= 〈←n(t)g(t)|F |d(←n(t)g(t))〉. Thus, the parallel transport
alongC̃ is described by the equation〈←n(t)|F |d←n(t)〉 + dg(t)g† = 0. Forg(0)=
1 ∈ G we obtain the holonomyg(T) = exp[− ∫ T

0 〈←n(t)|F | d
dt
←n(t)〉 dt] or, in an

equivalent form

g(T) = exp

[
−
∮

C
〈←n|F |d←n〉

]
. (5)

It is a formula describing the geometric (Berry) phase in (4). The expression
A(| ←n〉) := 〈←n |F | d←n〉 is a local conection form onB.

The phaseg(T) does not depend on the time-independent gauge transfor-
mation, which is equivalent to the replacement of the section| ←n〉 := |←n〉g(t) by
| ←n〉 := |←n〉gg(t) whereg is t-independent. Writinggg(t) =: g̃(t) we conclude
that the holonomy (5) is preserved.

Further we present a simple application which follows from the existence
of the connection one-form. We give a formula allowing to calculate a distance
between two vectors inB in terms of vectors inE. Let us consider the identity
(Anandan, 1990)

d

dt
|→n〉 = δ

dt
|→n〉 + |→n〉ω(|→̇n〉)

where the first term is defined as a differenced
dt |→n〉 = δ

dt |→n〉 − |→n〉ω(|→̇n〉).
Definition of the connection form is equivalent to unique decomposition

Tq E = Vq E ⊕ Hq E for everyq ∈ E of the tangent spaceTq E into horizontal and
vertical subspaces. Forq = |→n〉 the vector δdt |→n〉 ∈ Hq E since the horizontal sub-
space belongs to the kernel ofω. This vector is tangent to the curveC : [0, T ] → B
given by the projectionp|→n(t)〉 = |←n(t)〉 = C(t). It is implied by the fact that the



P1: GRA

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468236 August 19, 2003 4:58 Style file version May 30th, 2002

1056 Dajka and Szopa

vertical space belongs to the kernel of the tangent map induced by projectionp.
Thus δ

dt |→n〉 = d
dt |←n〉 for every curve|←n(t)〉 ⊂ B.

Sinced
dt |←n〉 = d

dt |→n〉 − |→n〉ω(|→̇n〉) = d
dt |→n〉 − |→n〉〈→n|F | d

dt |→n〉 the integration
yields

∫ t2
t1

d
dt |←n〉 dt = ∫ t2

t1
( d

dt |→n〉 − |→n〉〈→n|F | d
dt
→n〉) dt. Thus

1 ≡ |←n(t2)〉 − |←n(t1)〉 =
∫ t2

t1

(
d

dt
|→n〉 − |→n〉〈→n|F | d

dt
→n〉
)

dt. (6)

Taking an arbitrary norm of1 gives a metric inB with a distance in base space
B expressed in terms of vectors inE. The proposed metrics is purely geometric
with no invocation of the specific evolution in opposition to the metrics proposed
by Anandan, 1990.

4. TOPOLOGICAL ASPECTS OF QUANTUM HOLONOMY

In this section we analyze some topological properties of holonomy, which
lead to nontrivial difference between quaternionic and complex Berry phase. We
consider cyclic quantum evolutionf : M → B where the parameter spaceM ≈
Sn is homeomorfic withn-dimensional sphere. It is well known that ifM = S2

the complex geometric phase isnontrivial in that sense that it cannot be removed
by a globally defined gauge transformation (Szopa, 1992). It is caused by the fact
that there is no globally defined coordinate system on the sphere and the local
connection one-form is singular as in the case ofU (1) magnetic monopole. In the
following we compare the triviality of the holonomy in quaternionic and complex
quantum mechanics. We limit to the case whenf = 1 andE = B××G is Hopf
bundle: quaternionic (with a fiber topologically equivalent toS3) or complex (with
a fiber topologically equivalent toS1). We call the geometric phase trivial if it is
removable by a gauge transformation with no singularity, i.e. global. First we state
without proof the theorem (Kiritsis, 1987):

Let M ≈ Sn. For every loop f : M → B the geometric phase is trivial if
and only if πn(E) = πn(B), whereπn(X) denotes thenth homotopy group of
topological spaceX.

Let us consider the exact sequence of a bundle homotopy (Steenrod, 1951)

πn(G)→ πn(E)→ πn(B)→ πn−1(G) (7)

In the quaternionic case forf = 1 the fiberG ≈ S3. Let us consider the case
n = 2, i.e. the parameter spaceM homeomorfic with a two-dimensional sphere.
Since both first and second homotopy group ofS3 is trivial, the sequence (7) yields

0→ π2(E)→ π2(B)→ 0 (8)

Since the sequence (8) is exactπ2(E) = π2(B), and according to the theorem stated
above, the geometric phase is trivial contrary to the results obtained in complex
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quantum mechanics (Szopa, 1992). Therefore we showed that the global properties
of quantum evolution can be different in the quantum mechanics over the algebra
of quaternions and over the field of complex numbers.

5. CONCLUSIONS

Quantum mechanics with a Berry’s discovery of the geometric phase has
gained a new global aspect. This geometric and topological structure can also be
considered in the framework of the quaternionc quantum mechanics. Geometric
phase has been shown to be a holonomy of a suitably defined fiber bundle due to
the existence of quaternionic analogy of the Anandan connection.

The topological analysis of the triviality of the geometric phase has shown
the possible differences between results obtained in quaternionic and complex
quantum mechanics. For the evolution generated by a parameter space topologi-
cally equivalent to the two-dimensional sphere the quaternionic geometric phase
is trivial while the complex one not. The global properties of quaternionic quan-
tum mechanics caused by the noncommutativity of Hamilton’s quaternions can be
different if compared with the complex case.
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